Abstract

The traditional canned electric valve consists of an induction motor and a reducer, which need to be matched with the position sensor to achieve precise control of valve position. The position sensor and reducer are not only easily damaged in high-temperature liquids, but also the slip rate of the induction motor is greatly affected by the liquid temperature, which makes it difficult to achieve accurate control. To address the above problems, this paper introduces a new topology of canned electric valve permanent magnet synchronous motor (CEV-PMSM), and a new maximum torque per ampere (MTPA) model is proposed. The new MTPA control equation considering the canned sleeve parameters is derived theoretically. By comparing it with id = 0 control and ideal MTPA control strategy, it is proved that the new MTPA model reflects the electric valve operation characteristics more realistically. In order to achieve sensorless control of the electric valve, and to achieve fast response and high-precision control under external disturbances and parameter uncertainties, the proposed control scheme combines sensorless control and two-degree-of-freedom (2-DOF) control. Consequently, the proposed control scheme can effectively improve the static and dynamic performances of the CEV-PMSM, as well as adjust the tracking and anti-disturbance performances independently. Finally, a 2 kW 100 r/min prototype was manufactured and corresponding experiments were conducted to verify the accuracy of the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.