Abstract

Comfortable, healthy, and energy-saving indoor environments can be obtained via a dynamic thermal comfort control. Difficulties to design an optimal control system for a dynamic thermal environment arise due to the lack of coordinative control evaluation methods for conflicting comfort and energy-saving indices. An improved multi-objective algorithm based on discrete PSO (Particle Swarm Optimization) is proposed to calculate the optimal values of parameters in the dynamic comfort control system based on users balance between the comfort and energy conservation. No a priori information or physical indoor environment model is needed. Experiment results demonstrate the effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.