Abstract
In this paper we illustrate some optimization challenges in the structured low rank approximation (SLRA) problem. SLRA can be described as the problem of finding a low rank approximation of an observed matrix which has the same structure as this matrix (such as Hankel). We demonstrate that the optimization problem arising is typically very difficult: in particular, the objective function is multiextremal even for simple cases. The main theme of the paper is to suggest that the difficulties described in approximating a solution of the SLRA problem open huge possibilities for the application of stochastic methods of global optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.