Abstract
The path integral Monte Carlo simulated quantum annealing algorithm is applied to the optimization of a large hard instance of the random satisfiability problem (N = 10,000). The dynamical behavior of the quantum and the classical annealing are compared, showing important qualitative differences in the way of exploring the complex energy landscape of the combinatorial optimization problem. At variance with the results obtained for the Ising spin glass and for the traveling salesman problem, in the present case the linear-schedule quantum annealing performance is definitely worse than classical annealing. Nevertheless, a quantum cooling protocol based on field-cycling and able to outperform standard classical simulated annealing over short time scales is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.