Abstract
The on-line Class Constrained Bin Packing problem (CCBP) is one of variant version of the Bin Packing Problem (BPP). The BPP is to find the minimum numbers of bins needed to pack a given set of items of known sizes so that they do not exceed the capacity B of each bin. In the CCBP, we are given bins of capacity B with C compartments and n items of Q different classes, each item i is belong to 1,2,…,n with class qi and si. The CCBP is to pack the items into bins, where each bin contains at most Q different classes and has total items size at most B. This CCBP is known to be NP-hard combinatorial optimization problems. In this paper, we used an ant colony optimization (ACO) approach with a simple but very effective local search algorithm to resolve this NP-hard problem. After the experimental design, limited computational results show the efficiency of this scheme. It is also shown that the ACO approach can outperform some existing methods, whereas the hybrid approach can compete with the known solution methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.