Abstract

This paper focuses on the problem of reducing energy consumption within high-performance computing data centers, especially for those with a large portion of “small size” jobs. Different from previous works, the efficiency of job scheduling and processing is made as the first priority. To reduce energy from servers while maintaining the processing efficiency of jobs, a new hysteresis computing resource-provisioning algorithm is proposed to adjust the total computing resource reactively. A dynamical thermal model is presented to reflect the relationship between the computational system and cooling system. The proposed model is used to formulate constrained optimal control problems to minimize the energy consumption of the cooling system. Then, a two-step solution is proposed. Firstly, a thermal-aware resource allocation optimizer is developed to decide where the resource should be increased or decreased. Secondly, an economic model predictive controller is designed to adjust the cooling temperature predictively along with the variation of the rack power. Performance of the proposed method is studied through simulations with real job trace. The results show that significant energy saving can be achieved with guaranteed service quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.