Abstract

Engineering costs, especially cost for controller design, are substantial and obstruct active magnetic bearings for broader industrial applications. An optimization-based active magnetic bearing controller design method is developed to solve this problem. Optimization criteria are selected to describe active magnetic bearing practical performance. Controller components are chosen considering that the parameters can be manually interpreted and modified on-site for commissioning. A multi-objective optimization toolbox can be used to tune the controller parameters automatically by minimizing the optimization criteria. The method has been verified within a controller design process for an active magnetic bearing levitated machine. With this method, engineering effort for controller design can be reduced significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call