Abstract
In this paper, we bring together the worlds of model order reduction for stochastic linear systems and H2-optimal model order reduction for deterministic systems. In particular, we supplement and complete the theory of error bounds for model order reduction of stochastic differential equations. With these error bounds, we establish a link between the output error for stochastic systems (with additive and multiplicative noise) and modified versions of the H2-norm for both linear and bilinear deterministic systems. When deriving the respective optimality conditions for minimizing the error bounds, we see that model order reduction techniques related to iterative rational Krylov algorithms (IRKA) are very natural and effective methods for reducing the dimension of large-scale stochastic systems with additive and/or multiplicative noise. We apply modified versions of (linear and bilinear) IRKA to stochastic linear systems and show their efficiency in numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.