Abstract
This paper introduces computer aided analysis system for diagnosis of liver abnormality in abdominal CT images. Segmenting the liver and visualizing the region of interest is a most challenging task in the field of cancer imaging, due to small observable changes between healthy and unhealthy liver. In this paper, hybrid approach for automatic extraction of liver contour is proposed. To obtain optimal threshold, the proposed work integrates segmentation method with optimization technique in order to provide better accuracy. This method uses bilateral filter for preprocessing and Fuzzy C means clustering (FCM) for segmentation. Mean Grey Wolf Optimization technique (mGWO) has been used to get the optimal threshold. This threshold is used for segmenting the region of interest. From the segmented output, largest connected region are identified using Label Connected Component (LCC) algorithm. The effectiveness of proposed method is quantitatively evaluated by comparing with ground truth obtained from radiologists. The performance criteria like dice coefficient, true positive error and misclassification rate are taken for evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.