Abstract

In spite of its overall efficiency and robustness for capturing the interface in multiphase fluid dynamics simulations, the well-known shortcoming of the level-set method is associated with the lack of a systematic approach for preserving the regularity of the distance function. This is mainly due to the stretching (or compressing) effect of the strain rate especially in the vicinity of the liquid-gas interface. Level-set re-initialization is an effective treatment for this issue. However, the traditional approach based on the hyperbolic Hamilton–Jacobi equation is a computationally expensive procedure. Crucially, due to the hyperbolic nature of the formulation, the accuracy of the results hinges significantly on the specialized handling of blind spots near the liquid-gas interface intersecting the substrate. The present work proposes a two-step elliptic level-set re-initialization approach that strictly preserves the location of zero level-set via incorporation of an element splitting process. The primary initialization step helps remove any non-smoothness in the to-be regularized level-set function dramatically improving the efficiency of the secondary optimization step. Geometric representation of the boundary conditions is utilized in the initialization step, while the optimization step minimizes the reliance of the results on the treatment of the blind spots. The performance of the proposed method is examined for free and sessile three-dimensional droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call