Abstract

This paper presents the prediction of kinematic and kinetic patterns for human squat jumping using an optimization-based dynamic human movement prediction technique. This method enables prediction of realistic kinematics and kinetics in human squat vertical jumping including muscle and joint forces. The case of vertical jumping is selected because the criterion is clear: to maximize the jump height. First, an anatomically detailed three-dimensional human squat jump model was developed. The movement was then parameterized by means of time functions controlling selected degrees-of-freedom (DOF) of the model. Subsequently, the optimizer found the parameters of these functions to maximize the jump height subject to anatomical and physiological constraints. The results were compared with experimental data from a group of six healthy males. Qualitative and quantitative comparisons between predicted results and experimental observations indicate that the approach is capable of predicting the jump height enhancement in squat vertical jumping with arm swing and reproducing the coordinated motion in terms of kinetics and kinematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.