Abstract

Deep brain stimulation (DBS) is a neurosurgical treatment in, e.g., Parkinson's Disease. Electrical stimulation in DBS is delivered to a certain target through electrodes implanted into the brain. Recent developments aiming at better stimulation target coverage and lesser side effects have led to an increase in the number of contacts in a DBS lead as well as higher hardware complexity. This paper proposes an optimization-based approach to alleviation of the fault impact on the resulting therapeutical effect in field steering DBS. Faulty contacts could be an issue given recent trends of increasing number of contacts in DBS leads. Hence, a fault detection/alleviation scheme, such as the one proposed in this paper, is necessary ensure resilience in the chronic stimulation. Two alternatives are considered and compared with the stimulation prior to the fault: one using higher amplitudes on the remaining contacts and another with alleviating contacts in the neighborhood of the faulty one. Satisfactory compensation for a faulty contact can be achieved in both ways. However, to designate alleviating contacts, a model-based optimization procedure is necessary. Results suggest that stimulating with more contacts yields configurations that are more robust to contact faults, though with reduced selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.