Abstract
Any process in which competing solutions replicate with errors and numbers of their copies depend on their respective fitnesses is the evolutionary optimization process. As during carcinogenesis mutated genomes replicate according to their respective qualities, carcinogenesis obviously qualifies as the evolutionary optimization process and conforms to common mathematical basis. The optimization view accents statistical nature of carcinogenesis proposing that during it the crucial role is actually played by the allocation of trials. Optimal allocation of trials requires reliable schemas’ fitnesses estimations which necessitate appropriate, fitness landscape dependent, statistics of population. In the spirit of the applied conceptual framework, features which are known to decrease efficiency of any evolutionary optimization procedure (or inhibit it completely) are anticipated as “therapies” and reviewed. Strict adherence to the evolutionary optimization framework leads us to some counterintuitive implications which are, however, in agreement with recent experimental findings, such as sometimes observed more aggressive and malignant growth of therapy surviving cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.