Abstract
This study suggests a novel approach to the retrieval of soil surface parameters using a single-acquisition single-configuration synthetic-aperture radar (SAR) system. Soil surface parameters such as soil moisture and surface roughness are key elements for many environmental studies, including Earth surface water cycles, energy exchange, agriculture, and geology. Remote sensing techniques, especially SAR data, are commonly used to retrieve such soil surface parameters over large areas. Several backscattering models have been proposed for soil surface parameters retrieval from SAR data. However, commonly, these backscattering models require multi configuration SAR data, including multi-polarization, multi-frequency, and multi-incidence angle. Here we propose a methodology that employs single-acquisition single-configuration SAR data for the retrieval of soil surface parameters. The originality is to use single-acquisition single-configuration SAR data to retrieve the soil surface parameters using an optimization approach by the genetic algorithm (GA); we have used the modified Dubois model (MDM) in HH polarization as the backscattering model. Three HH polarization and C band data sets from Quebec (Radarsat-1), Ontario (SIR-C), and Oklahoma (AIRSAR) were analyzed. The retrieved values of soil moisture and soil surface roughness were then compared to ground truth measurements with corresponding parameters. We employed diverse criteria, including the mean absolute error (MAE), the root mean square error (RMSE), the coefficient of performance (CP), and the correlation coefficient to investigate the performance of the proposed methodology. This analysis suggests the capability of the GA for the retrieval of soil surface parameters. Based on our findings, this method presents a viable alternative approach to the retrieval of soil surface parameters when only single-acquisition single-configuration SAR data is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.