Abstract

The sustainable management of large amounts of fly ash (FA) is a concern for researchers, and we aim to determine the FA application in plant development and nematicidal activity in the current study. A pot study is therefore performed to assess the effects of adding different, FA-concentrations to soil (w/w) on the infection of chickpea plants with the root-knot nematode Meloidogyne incognita. Sequence characteristic amplified region (SCAR) and internal transcribed spacer (ITS) region-based-markers were used to molecularly confirm M. incognita. With better plant growth and chickpea yield performance, FA enhanced the nutritious components of the soil. When compared with untreated, uninoculated control (UUC) plants, the inoculation of M. incognita dramatically reduced chickpea plant growth, yield biomass, and metabolism. The findings showed that the potential of FA to lessen the root-knot nematode illness in respect of galls, egg-masses, and reproductive attributes may be used to explain the mitigating effect of FA. Fascinatingly, compared with the untreated, inoculated control (UIC) plants, the FA treatment, primarily at 20%, considerably (p ≤ 0.05) boosted plant growth, yield biomass, and pigment content. Additionally, when the amounts of FA rose, the activity of antioxidants like superoxide dismutase-SOD, catalase-CAT, and peroxidase-POX as well as osmo-protectants like proline gradually increased. Therefore, our findings imply that 20% FA can be successfully applied as a potential strategy to increase biomass yield and plant growth while simultaneously reducing M. incognita infection in chickpea plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call