Abstract

ABSTRACT The neural control of movement has been described using different sets of elemental variables. Two possible sets of elemental variables have been suggested for finger pressing tasks: the forces of individual fingers and the finger commands (also called finger modes or central commands). The authors analyzed which of the 2 sets of the elemental variables is more likely used in the optimization of the finger force sharing and which set is used for the stabilization of performance. They used two recently developed techniques—the analytical inverse optimization (ANIO) and the uncontrolled manifold (UCM) analysis—to evaluate each set of elemental variables with respect to both aspects of performance. The results of the UCM analysis favored the finger commands as the elemental variables used for performance stabilization, while ANIO worked equally well on both sets of elemental variables. A simple scheme is suggested as to how the CNS could optimize a cost function dependent on the finger forces, but for the sake of facilitation of the feed forward control it substitutes the original cost function by a cost function, which is convenient to optimize in the space of finger commands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call