Abstract

A fluorescence polarization (FP) immunoassay has been optimized and validated for rapid quantification of T-2 and HT-2 toxins in both unprocessed cereals, including oats, barley and rye, and cereal-based products for direct human consumption, such as oat flakes, oats crispbread and pasta. Samples were extracted with 90 % methanol, and the extract was filtered and diluted with water or sodium chloride solution prior to the FP immunoassay. Overall mean recoveries from spiked oats, rye, barley, oat flakes, oats crispbread and pasta ranged from 101 to 107 %, with relative standard deviations lower than 7 %. Limits of detection (LODs) of the FP immunoassay were 70 μg/kg for oats, 40 μg/kg for oat flakes and barley, 25 μg/kg for pasta and 20 μg/kg for rye and oats crispbread. The trueness of the immunoassay was assessed by using two oat and oat flake reference materials for T-2 and HT-2 toxins, showing good accuracy and precision. Good correlations (r > 0.953) were observed between T-2 and HT-2 toxin contents in naturally and artificially contaminated samples determined by both FP immunoassay and ultra-high-performance liquid chromatography (UHPLC) with immunoaffinity column cleanup used as reference method. These results, combined with rapidity and simplicity of the assay, show that the optimized assay is suitable for high-throughput screening, as well as for reliable quantitative determination of T-2 and HT-2 toxins in cereals and cereal-based products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.