Abstract

Cement is the primary ingredient in concrete, which is one of the crucial building materials. The evolution of greenhouse gases, particularly carbon dioxide, which is produced during the hydration stage, has increased because of excessive use of concrete. Geopolymer, an alumina-silicate based bonding substance is made up of waste materials such as Fly ash (FA) or Silica Fume (SF) in the presence of alkaline solutions has been developed to reduce the effect of carbon emissions on the environment. This paper studied the optimization and utilization of FA and SF replacement as pozzolanic materials for the development of sustainable geopolymer mortar and to achieve optimal mechanical strength using response surface methodology (RSM). According to the study, with the addition of 90% FA and 10% SF content to the geopolymer design mix significantly improves their mechanical properties. When SF and sodium hydroxide are combined to create geopolymer mortar, they work as an alkaline catalyst, dramatically reducing carbon emission of the waste materials and providing it an edge over cement-based mortar. The construction of self-sustaining infrastructures ensuring human safety and eco-friendly practices will be encouraged by the multi-objective approach of RSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.