Abstract

Implementing runoff control infrastructure has been regarded as an efficacious measure in stormwater management. The issue of its cost-effectiveness is a primary concern for decision makers since it is an exorbitant investment. However, most of existed studies only concentrated on the cost-effectiveness optimization of runoff control infrastructure, especially green infrastructure, between hydrological and economic aspects, and therefore, the potential layout scenarios with high extra environmental benefits could be neglected in the traditional two-dimensional frameworks. In this study, a novel carbon dioxide equivalent-based index was quantified to represent the extra environmental benefits of runoff control infrastructure besides stormwater management and was further integrated into the assessment framework. The effectiveness of green and grey infrastructure was comprehensively evaluated and traded off between hydrological, environmental and economic aspects. The results demonstrated that grey infrastructure is a better measure than green infrastructure when only hydrological (HF index) and economic (CI index) performances were considered. Nevertheless, the environmental performance (EROI index) of green infrastructure prevails over grey infrastructure, and when optimizing green and grey infrastructure simultaneously in the three-dimensional framework considering environmental effectiveness, green infrastructure is comparable with grey infrastructure. Furthermore, an appropriate composition of coupled green-grey infrastructure is requisite, which could achieve an optimal trade-off between hydrological and environmental effectiveness. The sources of environmental benefits were also identified and analyzed from three representative preference scenarios. The findings of the study could serve as a trade-off basis between green and grey infrastructure, as well as between EROI and HF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.