Abstract
In order to improve the heat transfer effect of the liquid-cooled plate with the traditional straight channel, 24 new liquid-cooled structures were obtained based on the fractal concept by adding 6 geometrically structured branch channels to the traditional straight channel and adding different forms of secondary channels between the branch channels and between the branch channels and the main channel. On the basis of establishing a numerical simulation model and verifying the accuracy of the model, the thermal characteristics of 24 liquid-cooled structures were analysed by computational fluid dynamics (CFD) simulation, and the initial relative optimal liquid-cooled channel structure was obtained by taking the comprehensive thermal performance as the evaluation index. Then, the initial relative optimal channel structure parameters were optimised in steps using NSGA-II and grey relational analysis algorithms. In order to further improve the heat transfer effect of the liquid-cooled plate, the relative optimal model after stepwise optimization was arced. The final results showed a decrease in the average temperature by 0.57 °C (1.6 %), an increase in the heat transfer coefficient by 356 W m−2 k−1 (21.3 %), and a decrease in the pressure drop by 34.55 Pa (50.2 %), as compared with the initial model. This study will provide some reference for the optimisation of the internal structural features of the channel and the improvement of the thermal performance of the liquid-cooled plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.