Abstract

The current study explores the co-pyrolysis of waste motor oil (WMO) and rice stubble in a designed lab-scale pyrolyzer to produce alternative energy fuels. The parameter screening was followed by optimization utilizing the Box-Behnken design (BBD). Reactor temperature (TR), mixing ratio (M), and holding time (t) affected the co-pyro-oil yield substantially. A maximum co-pyro-oil yield of 90.3% was achieved at a TR = 485 °C, t = 12.5 min, and M = 5% rice stubble to waste motor oil, which was further characterized and compared with the commercial diesel fuel properties. The highest research octane number of 76.15 was obtained for the co-pyro-oil (Co-PO), followed by the pyro-oil generated from only waste motor oil (POWMO). Consequently, the paraffin content increased to 64.34 wt% from 27.66 wt % for PO RS. The carbon number varied from C7–C17 for PO WMO and Co–Po, aligning with the diesel fuel requirements. Furthermore, a substantial enrichment in the physio-chemical properties of the produced Co-PO with reduced moisture content and enhancement in higher heating value (HHV) was also noticed. Hence, the generated Co-PO could be utilized as transport-grade fuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call