Abstract

The auxiliary power unit (APU) is a major power source of range-extended electric vehicle (R-EEV). Excellent coordination control strategy of APU has a great significance impact on improving the overall electrical control system performance of R-EEV. A coordination control strategy based on parameters adapt fuzzy-PID is proposed to ensure the dynamic and static response characteristics of the coordination control system. Firstly, the APU high precision simulation control model is built in GT-Power and Matlab-Simulink. Three coordination control strategies based on traditional PID control method are designed, namely, engine speed control model (ESCM), generator torque control model (GTCM), and APU speed-torque control model (AS-TCM). The three coordination control strategies are simulated on working conditions, which include start-up working condition, power raised working condition, and power reduced working condition. Combined with the PID control principle, the control performance and inherent limitations of three traditional PID control strategies (TPCS) are analyzed and compared. Then, according to the above simulation results of analysis and comparation, the parameters adapt fuzzy-PID control strategy (PAF-PCS) is designed and simulated. The results show that three control parameters ( kp, ki, kd) are changed in real time to ensure the flexibility and adaptability of the control system and improve the stability and robustness of control system. Finally, the results of bench test show that power responds quickly and no oscillation and fixed-point power generation works smoothly, which are basically consistent with the simulation results. Therefore, the PAF-PCS proposed in this paper has good feasibility and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.