Abstract
We introduce a variant of the timber grid shell, the timber Voronoi shell, whose surface is reticulated by Voronoi tessellation and whose edges are made of discrete dimensional timber. This work explores form-finding methods of the Voronoi shell as a compressive funicular shell. Two closed-form solutions to shape initialization are proposed. We develop methods for minimizing the deviation from coplanarity between timber members and adjacent surface normal in order to facilitate manufacturing. A well-defined fabrication process is important for making the physical structure consistent with the structural model. A 6-axis robot with a motor spindle is employed to prefabricate the timber so the in situ manual assembly becomes easier. A parametric model describes the joint details. We formulate the robotic toolpath as a closed-form function of the resultant mesh from form finding. Thus, a general-purpose programming language can directly implement the mesh optimization and manufacturing processes without CAD or CAM software. The physical implementations, including an exhibition pavilion, validated the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.