Abstract

Chickpeas hold significant nutritional and cultural importance, being a rich source of protein, fiber, and essential vitamins and minerals. They are a staple ingredient in various cuisines worldwide. Peeling chickpeas is considered a crucial pre-consumption operation due to the undesirability of peels for some uses. This study aimed to design, test, and evaluate a small chickpea seed peeling machine. The peeling prototype was designed in accordance with the chickpeas’ measured properties; the seeds’ moisture content was determined to be 6.96% (d.b.). The prototype was examined under four different levels of drum revolving speeds (100, 200, 300, and 400 rpm), and three different numbers of brush peeling rows. The prototype was tested with rotors of four, eight, and twelve rows of brushes. The evaluation of the chickpea peeling machine encompassed several parameters, including the machine’s throughput (kg/h), energy consumption (kW), broken seeds percentage (%), unpeeled seeds percentage (%), and peeling efficiency (%). The obtained results revealed that the peeling machine throughput (kg/h) exhibited an upward trend with increases in the rotation speed of the peeling drum. Meanwhile, the throughput decreased as the number of peeling brushes installed on the roller increased. The highest recorded productivity of 71.29 kg/h was achieved under the operational condition of 400 rpm and four peeling brush rows. At the same time, the peeling efficiency increased with the increase in both of peeling drum rotational speed and number of peeling brush rows. The highest peeling efficiency (97.2%) was recorded at the rotational speed of 400 rpm and twelve peeling brush rows. On the other hand, the lowest peeling efficiency (92.85%) was recorded at the lowest drum rotational speed (100 rpm) and number of peeling brush rows (4 rows). In the optimal operational condition, the machines achieved a throughput of 71.29 kg/h, resulting in a peeling cost of 0.001 USD per kilogram. This small-scale chickpea peeling machine is a suitable selection for small and medium producers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call