Abstract

The purpose of this study was to develop a novel nanostructured lipid carrier (NLC) for the intravitreal-targeting delivery of triamcinolone acetonide (TA) by direct ocular instillation. A five-level central composite rotable design was used to study the influence of four different variables on the physicochemical characteristics of NLCs. The analysis of variance (ANOVA) statistical test was used to assess the optimization of NLC production parameters. The systems were produced by high pressure homogenization using Precirol ®ATO5 and Squalene ® as solid and liquid lipids respectively, and Lutrol ®F68 as surfactant. Homogenization at 600 bar for 3 cycles of the optimized formulation resulted in the production of small NLC (mean diameter < 200 nm) with a homogeneous particle size distribution (polydispersity index (PI) ∼ 0.1), of negatively charged surface (∼|45| mV) and high entrapment efficiency (∼95%). Surface morphology was assessed by SEM which revealed fairly spherical shape. DSC, WAXS and FT-IR analyses confirmed that TA was mostly entrapped into the NLC, characterized by an amorphous matrix. In vivo Draize test showed no signs of ocular toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.