Abstract

Membrane fouling can hinder the widespread application of thin film composite (TFC) reverse osmosis (RO) for water treatment. This study evaluated a novel zwitterion-grafted TFC RO as a mean to address organic fouling for water reclamation. The membrane exhibited the best permeability at the grafting condition of 45 °C in 1 h. This modified membrane consistently possessed improved antifouling ability irrespective of organic foulants. Among individual foulants, surfactant Dodecyl Trimethyl Ammonium Chloride (DTAC) posed the worst fouling potential due to its low molecular weight and positive charge, whereas fouling induced by other substances were relatively analogous and minor. In the mixture of DTAC and proteins, the former played a key role in governing the membrane fouling. While, their interplay affected membrane fouling, the fouling extent varied upon the membrane materials. The extended Derijaguin, Landau, Verwey and Overbeek (xDLVO) theory was unable to fully describe the interactions between surfactant foulants and the membrane materials. The complementary use of quartz crystal microbalance with dissipation (QCM-D), otherwise, concurred the fouling potential and gave the plausible interpretation for fouling mechanisms by providing insightful information of foulant layer on the polyamide-coated sensor. This study provided critical insights of organic foulants’ behavior on TFC RO membrane and offered the promising industrial implication of the novel membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.