Abstract

The goal of this study was to explore the regulatory mechanisms of phenyllactic acid (PLA) overaccumulation in Lactobacillus plantarum. The dynamics of PLA production revealed that 24 h was a suitable fermentation time, at which one of the largest differences in PLA content between strains S1 and YM-4-3 was 22.42 mg/L. Additionally, an optimization experiment showed that PLA production under the optimal condition (sample YM-4-3y) was up to 400.74 mg/L, 7.61-13.26 times as those of YM-4-3 and S1. Subsequently, an integrated analysis of genomic, transcriptomic and metabolomic data revealed that, YM-4-3 and YM-4-3y, compared with S1, although lacking a complete de novo biosynthetic pathway, increased PLA production by strengthening the core pathway and central carbon metabolism, and weakening the biosynthesis pathway of amino acids and their derivatives. These changes can provide sufficient precursors and compensate for or balance the energy consumed by the reinforced core pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.