Abstract

Combinations of trench and holes in film cooling design for turbine blades have been suggested recently. In this work, structural optimization is performed for one of our previously proposed serrated trenches. Geometric parameters including serrated angle, width, and height of the trench, which are the key factors affecting the flow and cooling characteristics, are optimized. The relative area-averaged cooling effectiveness, the relative pressure drop coefficient, and the performance evaluation criterion (PEC) are the optimizing objectives. The multi-objective genetic algorithm is employed as the search strategy to achieve PEC maximization at blowing ratios in the range of 0.5–2.0. The individual variations of each parameter are studied by controlling the variables using the response surface method. It shows that the trench height is the most influential factor on flow and heat transfer; while the trench serrated angle mainly affects the heat transfer; and the trench width has a weak effect on both, depending on the blowing ratio. To achieve maximum PEC, the trench height needs to enlarge with the increase in blowing ratio, while contrary to this, the trench width needs to increase under low blowing ratios and decrease under high blowing ratios, and the optimum trench serrated angle is within the range of 80°–85° at all blowing ratios. The optimum geometry reduces the pressure loss while improves the cooling effectiveness by 8.43 %–17.97 % compared to the baseline trench. This work is instructive for the design and application of practical structures for blade cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.