Abstract
AbstractCutting fluids of various types are commonly employed to control the friction and heat during machining. The continuous application of cutting fluids is being avoided to reduce overall volume of cutting fluids, machining cost, environmental and health issues. To overcome these problems, minimum quantity lubrication (MQL) machining has been chosen as an alternative approach. In the present work, experiments are conducted using Taguchi’s robust design methodology to find out the optimal cutting parameters for surface roughness under different machining environmental conditions and carbide tool materials. The results indicated that there is considerable improvement in the machining performance using MQL machining. Flooded machining, high cutting speed, low feed rate, low depth of cut and chemical vapour deposition (CVD) coated tool are found to be the optimum conditions to minimize surface roughness. From the analysis of variance (ANOVA), feed rate is the most influential factor that affects the surface roughness than cutting speed and depth of cut.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.