Abstract

An experiment was conducted to investigate the effects of atmospheric pressure plasma generated by multi-hollow surface dielectric barrier discharges on physical quality of peanut (Arachis Hypogea L). Multi-hollow surface dielectric barrier discharge is a novel plasma device applicable in food industry applications due to the capacity of the generated plasma to treat the surface of food without changing the quality. Response surface methodology was used to optimize the plasma treatment for surface treatment as raw peanut forms over a range of power (10–40 W), air flow rate (0.5–20 L/min) and time (1–15 min). The weight loss, hardness, contact angle, color parameters, microstructure, and sensory quality evaluation were evaluated during plasma treatments and modeled by response surface methodology and compared the means. Second order polynomial model adequately described the plasma treated experimental data except for sensory attributes with an insignificant lack of fit (p > 0.05). The result revealed that extreme conditions caused a decrease in L*,b*, hardness, contact angle, increased weight loss, color change and changed the microstructure of the treated peanuts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.