Abstract

The engineering vehicle cab FOPS (falling-object protective structures) mainly contain two parts: top guard and front guard. According to the characteristics of the engineering vehicle cab security architectures, the simulation that top guard is impacted by the falling hammer is made by non-linear analysis software – LS-DYNA. The breakage phenomenon is also researched. The stiffness of the top guard is so weak that the hammer’s displacement is too large, which leads to the impact resistance of top guard is unqualified. Based on this, the cause of the stiffness insufficient is researched. By orthogonal experimental design for the dominant factors, it makes the simulation performance of the top guard meet the requirements of the national standard. On this basis, the simulation mechanical bearing capacity of the front guard is done by LS-DYNA, while the experimental research is also accomplished. By contrasting the result of simulation and experiment, it turns that simulative result coincides with the experimental well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.