Abstract
The study presented in this article attempts to determine the optimal composition of iron particles in the MR fluid for vehicular application based on the size of the particles, the simulation response of a test vehicle model, and the cost of the fluid. The MRF samples with two different-sized particles in varying compositions are prepared and characterized on a rheometer. The performance of each MRF sample in the semiactive suspension of a test vehicle is determined by simulating its full car model on a random road. The response of the vehicle model during simulation, the size of the particles, the volume fraction of the particles in the carrier fluid, and the fluid’s calculated cost are input for the Response surface optimization technique. The optimization results revealed that the MR fluid with large-sized particles in a 25% volume fraction would be suitable for the said application. Moreover, it was found that the rheological performance of the optimized MR fluid was better than the commercial MR fluid. The performance of the optimized fluid in a MR damper was experimentally evaluated against the stock passive damper of the test vehicle. The results of the experiment on the test vehicle showed that the MR damper improved the test vehicle’s ride comfort by 36.58% over a speed bump and 11.3% on an off-road test track. The road handling was also improved by 45% over a speed bump and 46% over the test track.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.