Abstract

Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study in vitro drug diffusion and permeation, however, it suffers from many limitations. Therefore, to perform in vitro permeation test (IVPT), we used a Strat-M® membrane with diffusion characteristics well-correlated to human skin. This study’s objective was to optimize the IVPT conditions using Plackett–Burman experimental design for bio-predictive evaluation of the in vitro permeation rates of five non-steroidal anti-inflammatory drugs (diclofenac, etofenamate, ibuprofen, ketoprofen, naproxen) across Strat-M® membrane from commercial topical formulations. The Plackett–Burman factorial design was used to screen the effect of seven factors in eight runs with one additional center point. This tool allowed us to set the sensitive and discriminative IVPT final conditions that can appropriately characterize the NSAIDs formulations. The permeation rate of etofenamate (ETF) across the Strat-M® membrane was 1.7–14.8 times faster than other NSAIDs from selected semisolids but 1.6 times slower than the ETF spray formulation.

Highlights

  • Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac diethylamine (DEA) or sodium (DNa), etofenamate (ETF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX), are the most popular drugs used in topical formulations for their analgesic, antirheumatic, and anti-inflammatory properties

  • Our study proved that the Plackett–Burman design was an efficient tool to optimize key study parameters during in vitro permeation test (IVPT) method development, to identify conditions for a sensitive and discriminating IVPT study that can appropriately characterize the NSAIDs formulations

  • An efficient and fast Ultra High Performance Liquid Chromatography (UHPLC) method was developed, optimized, and validated for simultaneous determination of all the studied NSAIDs. It may come in handy for other researchers dealing with NSAIDs

Read more

Summary

Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac diethylamine (DEA) or sodium (DNa), etofenamate (ETF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX), are the most popular drugs used in topical formulations for their analgesic, antirheumatic, and anti-inflammatory properties. NSAIDs are recommended in international and national guidelines as an early treatment option for symptomatic management of knee and hand osteoarthritis. They may be used ahead of oral NSAIDs due to their superior safety profile [1]. Topical pharmaceutical formulations, designed to permeate the skin, require in vitro release-rate testing (IVRT) to produce reliable and consistent results. The release of active pharmaceutical ingredient (API) from all batches of the produced preparation should proceed at the same rate, and deviations from the norm will indicate manufacturing errors.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call