Abstract

Aiming to develop potent autotaxin (ATX) inhibitors for fibrosis diseases, a novel series of tetrahydropyrido[4,3-d]pyrimidine derivatives was designed and synthesized based on our previous study. The enzymatic assay combined with anti-proliferative activities against cardiac fibroblasts (CFs) and hepatic stellate cell (HSC) in vitro were applied for preliminary evaluation of anti-fibrosis potency of target compounds, resulting in two outstanding ATX inhibitors 8b and 10g with the IC50 values in a nanomolar range (24.6 and 15.3 nM). Differently, 8b was the most prominent compound against CFs with inhibition ratio of 81.5%, while 10g exhibited the maximum inhibition ratio of 83.7% against t-HSC/Cl-6 cells. In the further pharmacological evaluations in vivo, collagen deposition assay demonstrated the conspicuous capacity of 8b to suppress TGF-β-mediated cardiac fibrosis. Simultaneously, H&E and Masson stains assays of mice liver validated 10g as an excellent anti-hepatofibrosis candidate, which reduced CCl4-induced hepatic fibrosis level prominently. Besides, the molecular binding models identified the essential interactions between 8b and ATX which was coincided with the SARs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.