Abstract

Azo dyes are complex derivatives of diazene used in food and textile manufacture. They are highly recalcitrant compounds, and account for severe environmental and health problems. Different strains of Pseudomonas species were isolated from textile wastewater effluents. The bioconversion of Remazol black B (a commonly used water soluble dye) by Pseudomonas aeruginosa was observed in static conditions. The bio-decolorization process was optimized by a multi factorial Plackett–Burman experimental design. Decolorization of 200 mg L−1 reached 100% in 32 h. Interestingly, the presence of yeast extract, magnesium and iron in the culture media, highly accelerated the rate of decolorization. Moreover, one of our isolates, P. aeruginosa KY284155, was kept high degradation rates at high pH (pH = 9), which represents the pH of most textile wastewater effluents, and was able to tolerate high concentration of dye up to 500 mg L−1. In bacteria, azo-dye degradation is often initiated by reductive azo compound cleavage catalyzed by azo-reductases. Three genes encoding azo-reductases, paazoR1, paazoR2 and paazoR3, could be identified in the genome of the isolated P. aeruginosa stain (B1). Bioinformatics analyses of the paazoR1, paazoR2 and paazoR3 genes reveal their prevalence and conservation in other P. aeruginosa strains. Chemical oxygen demand dramatically decreased and phyto-detoxification of the azo dye was accomplished by photocatalytic post treatment of the biodegradation products. We suggest applying combined biological photocatalytic post treatment for azo dyes on large scale, for effective, cheap decolorization and detoxification of azo-dyes, rendering them safe enough to be discharged in the environment.

Highlights

  • Textile wastewater usually contains a large variety of dyes and chemicals additives used in the dyeing process, such as heavy metals, soda ash, caustic soda and acetic acid

  • Reactive azo dyes are highly recalcitrant to conventional methods used in wastewater treatment because of the presence of strong electron-withdrawing groups that give them stability against bacterial degradation (Lucas et al 2007; Gregorio et al 2010)

  • Identification of isolated biodegrading strains Ten bacterial isolates capable of decolorizing Remazol black B were isolated from various sewage and textile effluents in Cairo and Giza governments

Read more

Summary

Introduction

Textile wastewater usually contains a large variety of dyes and chemicals additives used in the dyeing process, such as heavy metals, soda ash, caustic soda and acetic acid. Pollution with these dyes represents an important environmental challengeto the textile industry (Bansal and Kanwar 2013). Most azo dye degrading microorganisms cleave the azo bond(s), which subsequently generates colourless aromatic amines. These amines are toxic products, but could be metabolized under aerobic conditions to less toxic ones (Mohanty et al 2006)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call