Abstract

This article considers the design and control of the 2-butene metathesis process. The process transforms a low-value feedstock derived from a fluid catalytic cracking unit into more valuable products. The economical optimization is applied to the preheat–reaction and separation sections, with the objective of minimizing the total annual cost. The dynamic response and control of the plant are evaluated for feed flow perturbations. Although the process control system acts as a first line of defense against potential hazards, other independent safety layers are discussed with safety limits specific to the critical equipment of the 2-butene metathesis unit. The results prove that the metathesis reaction of 2-butene over a mesoporous tungsten catalyst is economically attractive. For a 5.7 t/h feed rate consisting of 2-butene (70% molar) and n-butane (30% molar), a reaction–separation plant (without recycle) requires 6570 × 103 $ investment and has a profitability of 2300 × 103 $/year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.