Abstract

New porous carbonaceous adsorbents were prepared from an oily sludge generated in a fuel oil storage tank using pyrolysis with and without activation by KOH at 600 °C. The pore characteristics of the activated carbonaceous adsorbent (AC), due to the formation of micropores and mesopores structure, were considerably better than those of non-activated carbonaceous adsorbent (NA). The adsorption of Cd from aqueous solutions on the produced carbonaceous adsorbents was optimized using the Taguchi method. Under optimum conditions, the Cd adsorption efficiency for the NA and AC was obtained to be 77.7 and 98.2 %, respectively. The initial concentration and the adsorbent dose were the most significant factors affecting the removal of Cd by NA and AC, respectively. The adsorption data for the AC were well fitted by the Langmuir, Freundlich, and Redlich-Peterson isotherms models. The regeneration and reuse of the adsorbents in the three cycles of Cd adsorption-desorption were possible. The carbonaceous adsorbents had acceptable efficiency for the removal of Cd from a mine wastewater. Based on the obtained results, the oily sludges available in huge amounts in the petroleum industry proved to be a potential precursor resource for the production of the porous carbonaceous adsorbents, particularly for application in the wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call