Abstract

BackgroundThe purpose of the present study is to optimize a spray-dried formulation as a model antibody regarding stability and aerodynamic property for further aerosol therapy of this group of macromolecules.MethodA three-factor, three-level, Box-Behnken design was employed milligrams of Cysteine (X1), Trehalose (X2), and Tween 20 (X3) as independent variables. The dependent variables were quantified and the optimized formulation was prepared accordingly. SEC-HPLC and FTIR-spectroscopy were conducted to evaluate the molecular and structural status of spray-dried preparations. Particle characterization of optimized sample was performed with the aid of DSC, SEM, and TSI examinations.ResultsExperimental responses of a total of 17 formulations resulted in yield values, (Y1), ranging from 21.1 ± 0.2 to 40.2 ± 0.1 (%); beta-sheet content, (Y2), from 66.22 ± 0.19 to 73.78 ± 0.26 (%); amount of aggregation following process, (Y3), ranging from 0.11 ± 0.03 to 0.95 ± 0.03 (%); and amount of aggregation upon storage, (Y4), from 0.81 ± 0.01 to 3.13 ± 0.64 (%) as dependent variables. Results—except for those of the beta sheet content—were fitted to quadratic models describing the inherent relationship between main factors.ConclusionCo-application of Cysteine and Tween 20 preserved antibody molecules from molecular degradation and improved immediate and accelerated stability of spry-dried antibodies. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology in preparation of stable spray-dried IgG.Graphical abstractGraphical abstractSpray drying of IgG in the presence of Trehalose, Cysteine and Tween 20.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.