Abstract

Biodiesel mainly comes from edible oil, and there is little research on its yield from non-edible sources with low-cost oil. It is paramount to investigate the non-edible oil resources which may lead to advance the commercial feasibility of biodiesel and cost effectiveness as well as resolve the food issues. This chapter describes four novel non-edible seed oil sources comprising Koelreuteria paniculata, Rhus typhina, Acacia farnesiana and Albizzia julibrissin for biodiesel production. We aimed to optimize different reaction parameters for oil extraction, alkali-catalyzed transesterification process for maximal biodiesel production and finally evaluate its compatibility with mineral diesel. The optimization factors in transesterification included the molar ratio of methanol to oil, reaction time, stirring intensity, catalyst concentration and temperature. Two methods have been described including Soxhlet and mechanical for extraction of seed oil. The synthesized esters were evaluated and characterized through the nuclear magnetic resonance (NMR; 1H and 13C), Fourier transform infrared (FT-IR) and gas chromatography–mass spectrometry (GC–MS) and the total conversion of crude oil to fatty acid methyl esters (FAMEs) were established. The inductively coupled plasma-optical emission spectrometry (ICP-OES) and Elemental Analyzer (EA) were used for evaluation of elemental concentration. The physico-chemical characterizations of the biodiesel, i.e., flash point, pour point, cloud point, and density were within the American Society for Testing and Materials (ASTM; D6751) and European Standards ((EN14214). Koelreuteria paniculata produced highest biodiesel oil content by Soxhlet extraction (28–30%) followed by the Albizzia julibrissin (19–24%), Acacia farnesiana (23%), Rhus typhina (20–22%). The density ranged from 0.83–0.87 @ 15°C (g/cm3) and the kinematic viscosity ranged from 3.75–6.3 (mm2/s) among all the plant sources. Koelreuteria paniculata had highest Na (5456.2), Cr (1246.8), Ni (658.36), and Al (346.87) elemental concentrations (μg/g) than other plant sources. The elemental percent of C, H, N, and O of biodiesel ranged from 72.54–76.86, 11.25–13.34, 1.97–2.73, and 9.86–12, respectively. In conclusion, these non-edible plant seeds offer a cheap source of renewable energy and can be easily grown on barren and wastelands and contribute to efficient biodiesel production to mitigate the energy crisis.

Highlights

  • Our results show that densities of all plant sources were within the ASTM (D6751) and (EN14214) standards

  • Fourier-transform infrared spectroscopy (FT-IR), NMR, and GC–MS analysis established the total conversion of crude oil to FAMEs

  • The elemental analysis of biodiesel ensured the feasibility for environment friendly usage

Read more

Summary

Introduction

The global energy need has been confronting major challenges owing to population growth and industrialization [1, 2]. The researcher community is applying renewable energy practices as an alternate to petroleum fuels with biodiesel, bioethanol, biomass, biogas, and synthetic fuels with the aim to curtail net CO2 emission, and improve air, soil, water and global warming [3]. The need for utilizing biodiesel is associated with its lower exhaust emissions (COx, SOx) and particulate matter [6]. It possesses tremendous biodegradability [7], lubricity, storage [8], and higher flash point [6], oxygen content than diesel [9–11]. The major issues for biodiesel production and commercialization from vegetable oils comprise their availability and manufacturing cost [13]

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call