Abstract

This paper aims to optimize high-volume limestone powder in sustainable ultra-high performance concrete (UHPC), and characterize its roles on plasticization effect, hydration kinetics, microstructure and hardened properties. The spread flow, hydration products, compressive strength, porosity and pore structure, shrinkage, embedded CO2 emission and unit cost are investigated with different substitution levels of binders by limestone powder, varying from 0 to 80 vol%. Results show that replacing high volume of binders by limestone powder is an efficient way to develop eco-friendly and low-cost UHPC. Limestone powder shows a positive mineral plasticization effect that should be considered in designing UHPC. The degree of secondary pozzolanic hydration is more intensive than C3S/C2S hydration, which can enhance the later-age strength development potential. An appropriate content of limestone powder can contribute to a higher strength, denser pore structure, diminished total free shrinkage and higher sustainability efficiency. The optimum content of limestone powder appears to be 50 vol% of the total powder content in UHPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call