Abstract

A set of poly (ε-caprolactone)/soy protein isolate (PCL/SPI) mats with different ratios of PCL to SPI was fabricated using the electrospinning method. The mat with PCL to SPI ratio of 95:5 (PS 95:5) had the narrowest nanofibers, the highest percentage of porosity, the lowest swelling ratio, the least vapor transmission, and the slowest degradation rate among the prepared mats. The hemolysis assay indicated that all mats can be considered biocompatible biomaterials. In continue, three different weight ratios of tea tree oil (TTO) were loaded into the PS 95:5 mat. The release profiles illustrated that higher amounts of TTO could be released in an acidic environment. The antioxidant activity of the mats increased by the increase in their TTO content. The cell viability test, cell adhesion images, and live/dead assay of TTO-loaded mats affirmed that all fabricated mats were biocompatible. The scratch wound assay expressed that TTO accelerates the rate of wound closure. The TTO-loaded mats illustrated antibacterial activity against both Escherichia coli and Staphylococcus aureus bacteria. The obtained outcomes revealed that TTO-loaded PCL/SPI mats can be considered promising potential wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.