Abstract
The size structure of phytoplankton communities influences important ecological and biogeochemical processes, including the transfer of energy through marine food webs. A variety of algorithms have been developed to estimate phytoplankton size classes (PSCs) from satellite ocean color data. However, many of these algorithms were developed for application to the global ocean, and their performance in more productive, optically complex coastal and continental shelf regions warrants evaluation. In this study, several existing PSC models were applied in the Northeast U.S. continental shelf (NES) region and compared with in situ PSC estimates derived from a local HPLC pigment data set. The effect of regional re-parameterization and incorporation of sea surface temperature (SST) into existing abundance-based model frameworks was investigated and model performance was assessed using an independent data set. Abundance-based model re-parameterization alone did not result in significant improvement in model performance compared with other models. However, the inclusion of SST led to a consistent reduction in model error for all size classes. Of two absorption-based algorithms tested, the best performing approach displayed similar performance metrics to the regional SST-dependent abundance-based model. The SST-dependent model and the absorption-based method were applied to monthly composites of the NES region for April and September 2019 and qualitatively compared. The results highlight the benefit of considering SST in abundance-based models and the applicability of absorption-based PSC methods in optically complex regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.