Abstract

Laser-dressing has been shown to be a promising method for overcoming some shortcomings of the conventional methods such as high wear of the dressing tool and its environmental concerns, high induced damage to the grinding wheel, low form flexibility and low speed. In this study, a resin bonded cBN grinding wheel has been dressed with a picosecond Yb:YAG laser. The efficiency of the laser-dressed grinding wheels has been compared with the conventionally dressed and sharpened grinding wheels through execution of cylindrical grinding tests on a steel workpiece (100Cr6). The conventional dressing and sharpening processes have been performed by using a vitrified SiC wheel and vitrified alumina blocks, respectively. By recording the spindle power values along with the surface topography measurements of the ground workpieces and the extraction of two roughness parameters (the average roughness Ra and the average roughness depth Rz), it is possible to provide an assessment of the cylindrical grinding process with different dressing conditions i.e. laser-dressing and conventional dressing. Accordingly, a strategy will be proposed to optimize the cylindrical grinding process with laser-dressed wheels regarding the forces and roughness values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.