Abstract

A series of nanostructured co-doped Co(1-x-y)Ni(x)Fe(y)Sb3 were fabricated using a rapid hydrothermal method at 170 °C for a duration of 12 h, followed by evacuated-and-encapsulated heating at 580 °C for a short period of 5 h. The resulting samples were characterized using powder X-ray diffraction, field emission scanning electron microscopy, bulk density, electronic and thermal transport measurements. The power factor of Co(1-x-y)Ni(x)Fe(y)Sb3 is significantly enhanced in the high-temperature region due to significant enhancement of the electrical conductivity and absolute value of thermopower. The latter arises from the onset of bipolar effect being shifted to higher temperatures as compared with the non-doped CoSb3. The room temperature thermal conductivity falls in the range between 1.22 and 1.67 W m(-1) K(-1) for Co(1-x-y)Ni(x)Fe(y)Sb3. The thermal conductivity of both the (x,y) = (0.14,10) and (0.14,12) samples is measured up to 600 K and found to decrease with increasing temperature. The thermal conductivity of the (0.14,10) sample goes down to ∼1.02 W m(-1) K(-1). As a result, zT = 0.68 is attained at 600 K. The lattice thermal conductivity is analyzed to gain insight into the contribution of various scattering processes that suppress the heat transfer through the phonons in Co(1-x-y)Ni(x)Fe(y)Sb3. The effect of the simultaneous presence of Co, Ni, and Fe elements on the electronic structure and transport properties of Co(1-x-y)Ni(x)Fe(y)Sb3 is described using the quantum mechanical tunneling theory of electron transmission among the potential barriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.