Abstract

The work presented in this Thesis was motivated by the needs of internal combustion engines (ICE) to decrease fuel consumption and CO2 emissions, while fulfilling the increasingly stringent pollutant emission regulations. Then, the main objective of this study is to optimize a mixing-controlled compression ignition (MCCI) combustion system to show its potential for future generation engines. For this purpose an automatic system based on CFD coupled with different optimization methods capable of optimizing a complete combustion system with a reasonable time cost was designed together with the methodology to analyze and understand the new optimum systems. The results presented in this work can be divided in two main blocks, firstly an optimization of a conventional diesel combustion system and then an optimization of a MCCI system using an alternative fuel with improved characteristics compared to diesel. Due to the methodologies used in this Thesis, not only the optimum combustion system configurations are described, but also the cause/effect relations between the most relevant inputs and outputs are identified and analyzed. The first optimization block applies non-evolutionary optimization methods in two sequential studies to optimize a medium-duty engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NOx and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. The results confirmed the limited benefits, in terms of fuel consumption, with constant NOx emission achieved when optimizing the engine hardware, while keeping air management and injection settings. Thus, including air management and injection settings in the optimization is mandatory to significantly decrease the fuel consumption while keeping the emission limits. The second optimization block applies a genetic algorithm optimization methodology to the design of the combustion system of a heavy-duty Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional mixing-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric mixing-controlled combustion system coupled with a three way catalyst to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The target of the optimizations is to improve net indicated efficiency while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels. Compared to the baseline engine fueled with DME, the results of the study provide an optimum conventional combustion system with a noticeable NIE improvement and an optimum stoichiometric combustion system that offers a limited NIE improvement keeping tailpipe NOx values below 1% of the original levels. The results presented in this Thesis provide an extended view of the advantages and limitations of MCCI engines and the optimization path required to achieve future emission standards with these engines. Additionally, this work showed how DME is a promising fuel for future generation engines since it is able to achieve future emission standards while maintaining diesel-like efficiency

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call