Abstract

While selective catalytic reduction (SCR) has long been indispensable for nitrogen oxide (NOx) removal, optimizing its performance remains a significant challenge. This study investigates the combined effects of structural and intake parameters on SCR performance, an aspect often overlooked in previous research. This paper innovatively developed a three-dimensional SCR channel model and employed response surface methodology to conduct an in-depth analysis of multiple key factors. This multidimensional, multi-method approach enables a more comprehensive understanding of SCR system mechanics. Through target optimization, we achieved a simultaneous improvement in three critical indicators: the NOx conversion rate, pressure drop, and ammonia slip. It is worth noting that the NOx conversion rate has been optimized from 17.07% to 98.25%, the pressure drop has been increased from 3454.62 Pa to 2558.74 Pa, and the NH3 slip has been transformed from 122.26 ppm to 17.49 ppm. These results not only advance the theoretical understanding of SCR technology but also provide valuable design insights for practical applications. Our findings pave the way for the development of more efficient and environmentally friendly SCR systems, potentially revolutionizing NOx control in various industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.