Abstract
The improved version of the constrained optimization harmonic balance method is presented to solve the Duffing oscillator with two kinds of fractional order derivative terms. The analytical gradients of the objective function and nonlinear quality constraints with respect to optimization variables are formulated and the sensitivity information of the Fourier coefficients can also obtained. A new stability analysis method based on the analytical formulation of the nonlinear equality constraints is presented for the nonlinear system with fractional order derivatives. Furthermore, the robust stability boundary of periodic solution can be determined by the interval eigenvalue problem. In addition, the sensitivity information mixed with the interval analysis method is used to quantify the response bounds of periodic solution. Numerical examples show that the proposed approach is valid and effective for analyzing fractional derivative nonlinear system in the presence of uncertainties. It is illustrated that the bifurcation solution in the fractional nonlinear systems may not be sensitive to the variation of the influence parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.