Abstract

Abstract We study the optimal performance of an endoreversible quantum dot heat engine, in which the heat transfer between the system and baths is mediated by qubits, operating under the conditions of a trade-off objective function known as the maximum efficient power function defined by the product of power and efficiency of the engine. First, we numerically study the optimization of the efficient power function for the engine under consideration. Then, we obtain some analytic results by applying a high-temperature limit and compare the performance of the engine at maximum efficient power function to the engine operating in the maximum power regime. We find that the engine operating at maximum efficient power function produces at least 88.89 % of the maximum power output while at the same time reducing the power loss due to entropy production by a considerable amount. We conclude by studying the stochastic simulations of the efficiency of the engine in maximum power and maximum efficient power regime. We find that the engine operating at maximum power is subjected to fewer power fluctuations as compared to the one operating at maximum efficient power function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call