Abstract

The exponential increase of the intelligent connected devices and the dramatic growth of the wireless data traffic have motivated the development of the green wireless networks as well as the Internet of Things (IoT). In this paper, we study the minimization problem of the total power to satisfy the required rate constraints in IoT, where the users simultaneously communicate through multiple independent channels. This problem is complicated due to the nonlinear data rate function based on the Shannon capacity formula. To this end, we first transfer the initial problem in power domain to an equivalent problem in rate domain instead of direct approximation for the high data rate. Then, we approximate it to a convex problem with the spectral radius constraints by the use of the Neumann expansion and nonlinear Perron–Frobenius theorem. By doing so, we achieve the close upper bound for this total power minimization problem. Moreover, we obtain the lower bound by making use of the convex relaxation technique, and finally get the global optimal solution by leveraging the branch-and-bound method. Simulation results verify that our proposed algorithms have a good approximation to the global optimal value for the power and rate allocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.