Abstract
The environment in earthquake-stricken areas is complex and changeable. The optimization of public service facility layout usually involves multiple objectives, such as maximizing coverage, minimizing service distance, optimizing resource allocation, etc. The coupling conflict between these objectives weakens the functions of public service facilities in earthquake-stricken areas. To improve the emergency response speed of the earthquake-stricken regions and reduce disaster losses, a simulated annealing (SA) based optimization algorithm for the layout of public service facilities in earthquake-stricken areas is proposed. Considering the public service demand in different stages of the earthquake-stricken area, set the minimum maximum weighted distance, the minimum number of facility points, and the minimum total weighted distance of the service demand point area within the service area of the public service facility point as the objective function, and set constraints such as each demand point is covered by at least one facility point, and the minimum number of public service facility points, build a multi-objective optimization model of public service facilities layout to avoid coupling conflicts between multiple objectives. The SA algorithm is used to solve the multi-objective optimization model of public service facility layout. SA algorithm adopts temperature update function and sets heuristic cooling criteria. Combining the success-failure method and the variable scale method, a new solution is generated using the effective offset. The improved Metropolis algorithm is used to set the acceptance criteria for the solution to obtain the optimal layout result for public service facilities in earthquake-stricken areas. The experimental results show that the algorithm can effectively optimize the layout of public service facilities in earthquake-stricken areas, and improve facility coverage and resource utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.